0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 1507 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 529 ms)
↳18 CpxRNTS
↳19 FinalProof (⇔, 0 ms)
↳20 BOUNDS(1, n^1)
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(0, y) → 0 [1]
div(x, y) → quot(x, y, y) [1]
quot(0, s(y), z) → 0 [1]
quot(s(x), s(y), z) → quot(x, y, z) [1]
quot(x, 0, s(z)) → s(div(x, s(z))) [1]
div(0, y) → 0 [1]
div(x, y) → quot(x, y, y) [1]
quot(0, s(y), z) → 0 [1]
quot(s(x), s(y), z) → quot(x, y, z) [1]
quot(x, 0, s(z)) → s(div(x, s(z))) [1]
div :: 0:s → 0:s → 0:s 0 :: 0:s quot :: 0:s → 0:s → 0:s → 0:s s :: 0:s → 0:s |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
div
quot
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
div(z', z'') -{ 1 }→ quot(x, y, y) :|: z' = x, z'' = y, x >= 0, y >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' = y, y >= 0, z' = 0
quot(z', z'', z1) -{ 1 }→ quot(x, y, z) :|: z' = 1 + x, z1 = z, z >= 0, x >= 0, y >= 0, z'' = 1 + y
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 = z, z >= 0, y >= 0, z'' = 1 + y, z' = 0
quot(z', z'', z1) -{ 1 }→ 1 + div(x, 1 + z) :|: z'' = 0, z >= 0, z' = x, x >= 0, z1 = 1 + z
div(z', z'') -{ 1 }→ quot(z', z'', z'') :|: z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 1 }→ 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0
{ div, quot } |
div(z', z'') -{ 1 }→ quot(z', z'', z'') :|: z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 1 }→ 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0
div(z', z'') -{ 1 }→ quot(z', z'', z'') :|: z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 1 }→ 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0
div: runtime: ?, size: O(n1) [z'] quot: runtime: ?, size: O(n1) [1 + z'] |
div(z', z'') -{ 1 }→ quot(z', z'', z'') :|: z' >= 0, z'' >= 0
div(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 1 }→ 1 + div(z', 1 + (z1 - 1)) :|: z'' = 0, z1 - 1 >= 0, z' >= 0
div: runtime: O(n1) [3 + 3·z'], size: O(n1) [z'] quot: runtime: O(n1) [5 + 3·z' + z''], size: O(n1) [1 + z'] |